

Welcome to unseen_open’s documentation!

An open, reproducible and transferable workflow to assess and
anticipate climate extremes beyond the observed record.

UNSEEN-open is an open source project using the global SEAS5
and ERA5 datasets. It makes evaluation of model simulations and extreme value analysis
easy in order to anticipate climate extremes beyond the observed record.
The project is developed as part of the ECMWF summer of weather code 2020 (esowc [https://esowc.ecmwf.int/]),
which is funded by Copernicus [https://climate.copernicus.eu/].

UNSEEN-open relies on xarray [http://xarray.pydata.org/en/stable/index.html] for data preprocessing and
uses ggplot [https://ggplot2.tidyverse.org/index.html] and extRemes [https://cran.r-project.org/web/packages/extRemes/index.html] for the extreme value analysis. The extreme
value utilities are being developed into an UNSEEN [https://climate.copernicus.eu/] Rpackage.

Read all about UNSEEN-open in our preprint [https://doi.org/10.31223/X5T04C]!

Applications

In our recent NPJ Climate and Atmospheric Science paper [https://doi.org/10.1038/s41612-020-00149-4] we outline four potential
applications where we believe UNSEEN might prove to be useful:

	Help estimate design values, especially relevant for data scarce regions

	Improve risk estimation of natural hazards by coupling UNSEEN to impact models

	Detect trends in rare climate extremes

	Increase our physical understanding of the drivers of (non-stationarity of) climate extremes

We hope this approach may see many applications across a range of scientific fields!

Introduction:

	What is UNSEEN?
	UNSEEN-open

	Overview

	Installation
	Python

	R

	Examples
	Siberian Heatwave

	California fires

	UK Precipitation

The workflow:

	Retrieve

	Preprocess

	Evaluate

Extra:

	Global monthly temperature records in ERA5

	California august temperature anomaly

	February and April 2020 precipitation anomalies

	Using EOBS + upscaling

License

All code and example data are available under the open source MIT License [https://opensource.org/licenses/MIT].

Citation

When using the code or example data, please cite this project.
If any questions may arise, please don’t hesitate to get in touch t.kelder@lboro.ac.uk.

What is UNSEEN?

The UNprecedented Simulated Extremes using ENsembles (UNSEEN, Thompson et al., 2017 [https://www.nature.com/articles/s41467-017-00275-3]) approach uses forecast ensemble members to compute robust statistics for rare events, which is challenging to compute from historical records. UNSEEN may therefore help to identify plausible – yet unseen – weather extremes and to stress-test adaptation measures with maximum credible events. For more info about UNSEEN, see our
preprint [https://doi.org/10.31223/X5T04C], BOX A in particular.

We believe UNSEEN has large potential as a tool to inform decision-making about unforeseen hydro-climatic risks. In order to apply UNSEEN: 1. Model ensemble members must be applicable for generating large samples of weather events (see Box B in paper [https://doi.org/10.31223/X5T04C]); and 2. Large volumes of data must be handled.

Our paper [https://doi.org/10.31223/X5T04C] presents a 6-step protocol (see below) and, as part of the protocol, the UNSEEN-open workflow, to guide users in applying UNSEEN more generally. The paper discusses the protocol in detail, including the practicalities of the workflow and its potential application to other datasets. The technical steps and relevant code are documented here. The protocol is applicable to any prediction system, whilst the code and guidance for UNSEEN-open is
developed to work with the Copernicus Data Store (CDS, https://cds.climate.copernicus.eu/).

UNSEEN-open

In this project, the aim is to build an open, reproducible, and transferable workflow for UNSEEN.

This means that we aim for anyone to be able to assess any climate extreme event anywhere in the world!

UNSEEN-open was therefore developed with a focus on Copernicus SEAS5 forecasts, because it is an openly available, stable, homogeneous, global, high-resolution, large ensemble with continuous evaluation at ECMWF. We refer to section 4.2 of our paper [https://doi.org/10.31223/X5T04C] for a discussion of other relevant datasets.

All code showing how UNSEEN data can be handled is documented on Jupyter notebooks. This means that some familiarity with python and R is (currently) required. Future further developments of tools and applications that do not require coding by the user themselves would be very interesting if time and funding allows!

[image: title]

Overview

Here we provide an overview of steps 3-5 for UNSEEN-open.

Retrieve

We use global open Copernicus C3S data: the seasonal prediction system SEAS5 and the reanlysis ERA5.

The functions to retrieve all forecasts (SEAS5) and reanalysis (ERA5) are retrieve_SEAS5 and retrieve_ERA5. You can select the climate variable, the target month(s) and the area - for more explanation see retrieve.

[2]:

retrieve.retrieve_SEAS5(
 variables=['2m_temperature', '2m_dewpoint_temperature'],
 target_months=[3, 4, 5],
 area=[70, -11, 30, 120],
 years=np.arange(1981, 2021),
 folder='../Siberia_example/SEAS5/')

[3]:

retrieve.retrieve_ERA5(variables=['2m_temperature', '2m_dewpoint_temperature'],
 target_months=[3, 4, 5],
 area=[70, -11, 30, 120],
 folder='../Siberia_example/ERA5/')

Preprocess

In the preprocessing step, we first merge all downloaded files into one netcdf file. Then the rest of the preprocessing depends on the definition of the extreme event. For example, for the UK case study, we want to extract the UK average precipitation while for the Siberian heatwave we will just used the defined area to spatially average over. For the MAM season, we still need to take the seasonal average, while for the UK we already have the average February precipitation.

Read the docs on preprocessing for more info.

Evaluate

The evaluation step is important to assess whether the forecasts are realistic and consistent to the observations. There are three statistical tests available through the UNSEEN R package [https://github.com/timokelder/UNSEEN]. See the evaluation section for more info.

Case studies

So what can we learn from UNSEEN-open?

Have a look at the examples [https://unseen-open.readthedocs.io/en/latest/Notebooks/Examples.html]!

Installation

Anaconda [https://www.anaconda.com/products/individual-d#macos] is used as package manager.

Python

For the retrieval and pre-processing of the data, the Copernicus Data Store (CDS) Python API cdsapi [https://pypi.org/project/cdsapi/] and xarray [http://xarray.pydata.org/en/stable/index.html] python packages are used. These can be installed using the environment provided in this directory.

conda env create -f environment.yml

This creates a conda environment called ‘basic_analysis’. The environment can be activated using:

conda activate basic_analysis

To get this environment as a kernel on jupyter, we need to install ‘ipykernel’ in the activated environment:

conda install -c anaconda ipykernel

And then install the environment:

python -m ipykernel install --user --name=basic_analysis

Hopefully, you will see the environment now as an available kernel!

R

For the evaluation, extreme value analysis and visualization, we use R ggplot and extRemes packages. The evaluation tests have been developed into an ‘UNSEEN’ R-package [https://github.com/timokelder/UNSEEN]. These packages can be installed as follows:

[]:

install regular packages
install.packages("extRemes") # for extreme value statistics
install.packages("ggplot2") # for plotting

install GitHub packages (tag = commit, branch or release tag)
install.packages("devtools")
devtools::install_github("timokelder/UNSEEN") # for evaluation

Examples

In this project, UNSEEN-open is applied to assess two extreme events in 2020: February 2020 UK precipitation and the 2020 Siberian heatwave.

	Siberian Heatwave

	California fires

	UK Precipitation

Launch in Binder [image: Binder] [https://mybinder.org/v2/gh/esowc/UNSEEN-open/master?filepath=doc%2FNotebooks%2Fexamples%2FSiberian_Heatwave.ipynb]

Siberian Heatwave

Prolonged heat events with an average temperature above 0 degrees over Siberia can have enormous impacts on the local environment, such as wildfires, invasion of pests and infrastructure failure, and on the global environment, through the release of greenhouse gasses during permafrost thawing.

The 2020 Siberian heatwave was a prolonged event that consistently broke monthly temperature the records. We show a gif of the monthly 2020 temperature rank within the observations from 1979-2020, see this section for details. - Rank 1 mean highest on record - Rank 2 means second highest - etc..

[image: Siberian Temperature records 2020]

This attribution study [https://www.worldweatherattribution.org/siberian-heatwave-of-2020-almost-impossible-without-climate-change/] by World Weather Attribution (WWA) has shown that the event was made much more likely (600x) because of human induced climate change but also that the event was a very rare event within our present climate.

Could such a thawing event be anticipated with UNSEEN?

With UNSEEN-open, we can assess whether extreme events like the Siberian heatwave have been forecasted already, i.e. whether we can anticipate such an event by exploiting all forecasts over the domain.

Retrieve data

The main functions to retrieve all forecasts (SEAS5) and reanalysis (ERA5) are retrieve_SEAS5 and retrieve_ERA5. We want to download 2m temperature, for the March-May target months over the Siberian domain. By default, the hindcast years of 1981-2016 are downloaded for SEAS5. We include the years 1981-2020. The folder indicates where the files will be stored, in this case outside of the UNSEEN-open repository, in a ‘Siberia_example’ directory. For more explanation, see
retrieve.

[1]:

import os
import sys
sys.path.insert(0, os.path.abspath('../../../'))
os.chdir(os.path.abspath('../../../'))

import src.cdsretrieve as retrieve
import src.preprocess as preprocess

import numpy as np
import xarray as xr

[2]:

retrieve.retrieve_SEAS5(
 variables=['2m_temperature', '2m_dewpoint_temperature'],
 target_months=[3, 4, 5],
 area=[70, -11, 30, 120],
 years=np.arange(1981, 2021),
 folder='../Siberia_example/SEAS5/')

[3]:

retrieve.retrieve_ERA5(variables=['2m_temperature', '2m_dewpoint_temperature'],
 target_months=[3, 4, 5],
 area=[70, -11, 30, 120],
 folder='../Siberia_example/ERA5/')

Preprocess

In the preprocessing step, we first merge all downloaded files into one xarray dataset, then take the spatial average over the domain and a temporal average over the MAM season. Read the docs on preprocessing for more info.

[4]:

SEAS5_Siberia = preprocess.merge_SEAS5(folder = '../Siberia_example/SEAS5/', target_months = [3,4,5])

Lead time: 02
1
12

And for ERA5:

[5]:

ERA5_Siberia = xr.open_mfdataset('../Siberia_example/ERA5/ERA5_????.nc',combine='by_coords')

Then we calculate the day-in-month weighted seasonal average:

[6]:

SEAS5_Siberia_weighted = preprocess.season_mean(SEAS5_Siberia, years = 39)
ERA5_Siberia_weighted = preprocess.season_mean(ERA5_Siberia, years = 42)

And we select the 2m temperature, and take the average over a further specified domain. This is an area-weighed average, since grid cell area decreases with latitude, see preprocess.

[8]:

area_weights = np.cos(np.deg2rad(SEAS5_Siberia_weighted.latitude))

SEAS5_Siberia_events_zoomed = (
 SEAS5_Siberia_weighted['t2m'].sel(# Select 2 metre temperature
 latitude=slice(70, 50), # Select the latitudes
 longitude=slice(65, 120)). # Select the longitude
 weighted(area_weights). # Apply the weights
 mean(['longitude', 'latitude'])) # and take the spatial average

SEAS5_Siberia_events_zoomed_df = SEAS5_Siberia_events_zoomed.rename('t2m').to_dataframe() # weights remove the DataArray name, so I renamed the DaraArray after applying the weight.

In this workflow, ERA5 and SEAS5 are on the same grid and hence have the same weights:

[9]:

area_weights_ERA = np.cos(np.deg2rad(ERA5_Siberia_weighted.latitude))
area_weights_ERA == area_weights

[9]:

Show/Hide data repr

Show/Hide attributes

xarray.DataArray
'latitude'
	latitude: 41

	

 California fires

Launch in Binder [image: Binder] [https://mybinder.org/v2/gh/esowc/UNSEEN-open/master?filepath=doc%2FNotebooks%2Fexamples%2FCalifornia_Fires.ipynb]

California fires

In August 2020 in California, wildfires have burned more than a million acres of land [https://edition.cnn.com/2020/10/06/us/gigafire-california-august-complex-trnd/index.html]. The wildfires coinciding with record high temperature anomalies, see August 2020 temperature anomaly. [image: California Temperature August 2020]

In this example, we evaluate the UNSEEN ensemble and show that there is a clear trend in temperature extremes over the last decades.

Retrieve data

The main functions to retrieve all forecasts (SEAS5) and reanalysis (ERA5) are retrieve_SEAS5 and retrieve_ERA5. We want to download 2m temperature for August over California. By default, the hindcast years of 1981-2016 are downloaded for SEAS5. We include the years 1981-2020. The folder indicates where the files will be stored, in this case outside of the UNSEEN-open repository, in a ‘California_example’ directory. For more explanation, see
retrieve.

[1]:

import os
import sys
sys.path.insert(0, os.path.abspath('../../../'))
os.chdir(os.path.abspath('../../../'))

import src.cdsretrieve as retrieve
import src.preprocess as preprocess

import numpy as np
import xarray as xr

[2]:

retrieve.retrieve_SEAS5(
 variables=['2m_temperature', '2m_dewpoint_temperature'],
 target_months=[8],
 area=[70, -130, 20, -70],
 years=np.arange(1981, 2021),
 folder='../California_example/SEAS5/')

[3]:

retrieve.retrieve_ERA5(variables=['2m_temperature', '2m_dewpoint_temperature'],
 target_months=[8],
 area=[70, -130, 20, -70],
 folder='../California_example/ERA5/')

Preprocess

In the preprocessing step, we first merge all downloaded files into one xarray dataset, then take the spatial average over the domain and a temporal average over the MAM season. Read the docs on preprocessing for more info.

[4]:

SEAS5_California = preprocess.merge_SEAS5(folder ='../California_example/SEAS5/', target_months = [8])

Lead time: 07
6
5
4
3

And for ERA5:

[5]:

ERA5_California = xr.open_mfdataset('../California_example/ERA5/ERA5_????.nc',combine='by_coords')

We calculate the standardized anomaly of the 2020 event and select the 2m temperature over the region where 2 standard deviations from the 1979-2010 average was exceeded, see this page. This is an area-weighed average, since grid cell area decreases with latitude, see preprocess.

[6]:

ERA5_anomaly = ERA5_California['t2m'] - ERA5_California['t2m'].sel(time=slice('1979','2010')).mean('time')
ERA5_sd_anomaly = ERA5_anomaly / ERA5_California['t2m'].sel(time=slice('1979','2010')).std('time')

We use a land-sea mask to select land-only gridcells:

[7]:

LSMask = xr.open_dataset('../California_example/ERA_landsea_mask.nc')
convert the longitude from 0:360 to -180:180
LSMask['longitude'] = (((LSMask['longitude'] + 180) % 360) - 180)

[8]:

area_weights = np.cos(np.deg2rad(ERA5_sd_anomaly.latitude))

ERA5_California_events = (
 ERA5_California['t2m'].sel(# Select 2 metre temperature
 longitude = slice(-125,-100), # Select the longitude
 latitude = slice(45,20)). # And the latitude
 where(ERA5_sd_anomaly.sel(time = '2020').squeeze('time') > 2). ##Mask the region where 2020 sd >2.
 where(LSMask['lsm'].sel(time = '1979').squeeze('time') > 0.5). #Select land-only gridcells
 weighted(area_weights).
 mean(['longitude', 'latitude']) #And take the mean
)

Plot the August temperatures over the defined California domain:

[9]:

ERA5_California_events.plot()

[9]:

[<matplotlib.lines.Line2D at 0x7f99b808f8b0>]

[image: ../../_images/Notebooks_examples_California_Fires_19_1.png]

Select the same domain for SEAS5 and extract the events.

[10]:

SEAS5_California_events = (
 SEAS5_California['t2m'].sel(
 longitude = slice(-125,-100), # Select the longitude
 latitude = slice(45,20)). # And the latitude
 where(ERA5_sd_anomaly.sel(time = '2020').squeeze('time') > 2). #Mask the region where 2020 sd >2.
 where(LSMask['lsm'].sel(time = '1979').squeeze('time') > 0.5). #Select land-only gridcells
 weighted(area_weights).
 mean(['longitude', 'latitude']))

And here we store the data in the Data section so the rest of the analysis in R can be reproduced.

[11]:

SEAS5_California_events.rename('t2m').to_dataframe().to_csv('Data/SEAS5_California_events.csv')
ERA5_California_events.rename('t2m').to_dataframe().to_csv('Data/ERA5_California_events.csv')

Evaluate

Note

From here onward we use R and not python!

We switch to R since we believe R has a better functionality in extreme value statistics.

Is the UNSEEN ensemble realistic?

To answer this question, we perform three statistical tests: independence, model stability and model fidelity tests.

These statistical tests are available through the UNSEEN R package [https://github.com/timokelder/UNSEEN]. See evaluation for more info.

[4]:

require(UNSEEN)
require(ggplot2)

Loading required package: UNSEEN

Loading required package: ggplot2

Warning message:
“replacing previous import ‘vctrs::data_frame’ by ‘tibble::data_frame’ when loading ‘dplyr’”

Timeseries

We plot the timeseries of SEAS5 (UNSEEN) and ERA5 (OBS) for the the Siberian Heatwave.

[5]:

timeseries = unseen_timeseries(
 ensemble = SEAS5_California_events,
 obs = ERA5_California_events,
 ensemble_yname = "t2m",
 ensemble_xname = "time",
 obs_yname = "t2m",
 obs_xname = "time",
 ylab = "August California temperature (C)")

timeseries + theme(text = element_text(size = 14))

Warning message:
“Removed 4680 rows containing non-finite values (stat_boxplot).”

[image: ../../_images/Notebooks_examples_California_Fires_33_1.png]

The timeseries consist of hindcast (years 1982-2016) and archived forecasts (years 2017-2020). The datasets are slightly different: the hindcasts contains 25 members whereas operational forecasts contain 51 members, the native resolution is different and the dataset from which the forecasts are initialized is different.

For the evaluation of the UNSEEN ensemble we want to only use the SEAS5 hindcasts for a consistent dataset. Note, 2017 is not used in either the hindcast nor the operational dataset, since it contains forecasts both initialized in 2016 (hindcast) and 2017 (forecast), see retrieve. We split SEAS5 into hindcast and operational forecasts:

[6]:

SEAS5_California_events_hindcast <- SEAS5_California_events[
 SEAS5_California_events$time < '2017-02-01' &
 SEAS5_California_events$number < 25,]

SEAS5_California_events_forecasts <- SEAS5_California_events[
 SEAS5_California_events$time > '2017-02-01',]

And we select the same years for ERA5.

[7]:

ERA5_California_events_hindcast <- ERA5_California_events[
 ERA5_California_events$time > '1981-02-01' &
 ERA5_California_events$time < '2017-02-01',]

Which results in the following timeseries:

[8]:

unseen_timeseries(
 ensemble = SEAS5_California_events_hindcast,
 obs = ERA5_California_events_hindcast,
 ensemble_yname = "t2m",
 ensemble_xname = "time",
 obs_yname = "t2m",
 obs_xname = "time",
 ylab = "August California temperature (C)") +
theme(text = element_text(size = 14))

[image: ../../_images/Notebooks_examples_California_Fires_39_0.png]

Evaluation tests

With the hindcast dataset we evaluate the independence, stability and fidelity. Here, we plot the results for the fidelity test, for more detail on the other tests see the evaluation section.

[9]:

Independence_California = independence_test(
 ensemble = SEAS5_California_events_hindcast,
 var_name = "t2m"
)

Independence_California +
 theme(text = element_text(size = 14))

Warning message:
“Removed 1625 rows containing non-finite values (stat_ydensity).”
Warning message:
“Removed 1625 rows containing non-finite values (stat_boxplot).”

[image: ../../_images/Notebooks_examples_California_Fires_41_1.png]

[10]:

Stability_California = stability_test(
 ensemble = SEAS5_California_events_hindcast,
 lab = 'August California temperature (C)',
 var_name = 't2m'
)
Stability_California

Warning message:
“Removed 4 row(s) containing missing values (geom_path).”

[image: ../../_images/Notebooks_examples_California_Fires_42_1.png]

[11]:

Stability_California = stability_test(
 ensemble = SEAS5_California_events_hindcast,
 lab = 'August temperature (C)',
 var_name = 't2m',
 fontsize = 10

)
ggsave(Stability_California,height = 120, width = 120, units = 'mm', filename = "graphs/California_stability.pdf")

Warning message:
“Removed 4 row(s) containing missing values (geom_path).”

The fidelity test shows us how consistent the model simulations of UNSEEN (SEAS5) are with the observed (ERA5). The UNSEEN dataset is much larger than the observed – hence they cannot simply be compared. For example, what if we had faced a few more or a few less heatwaves purely by chance?

This would influence the observed mean, but not so much influence the UNSEEN ensemble because of the large data sample. Therefore we express the UNSEEN ensemble as a range of plausible means, for data samples of the same length as the observed. We do the same for higher order statistical moments [https://en.wikipedia.org/wiki/Moment_(mathematics)].

[12]:

Fidelity_California = fidelity_test(
 obs = ERA5_California_events_hindcast$t2m,
 ensemble = SEAS5_California_events_hindcast$t2m,
 units = 'C',
 biascor = FALSE,
 fontsize = 14
)
Fidelity_California

[image: ../../_images/Notebooks_examples_California_Fires_45_0.png]

The fidelity test shows that the mean of the UNSEEN ensemble is too low compared to the observed – the blue line falls outside of the model range in a. To correct for this low bias, we can apply an additive bias correction, which only corrects the mean of the simulations.

Lets apply the additive biascor:

[10]:

obs = ERA5_California_events_hindcast$t2m
ensemble = SEAS5_California_events_hindcast$t2m
ensemble_biascor = ensemble + (mean(obs) - mean(ensemble))

fidelity_test(
 obs = obs,
 ensemble = ensemble_biascor,
 units = 'C',
 biascor = FALSE,
 fontsize = 14
)

[image: ../../_images/Notebooks_examples_California_Fires_47_0.png]

This shows us what we expected: the mean bias is corrected because the model simulations are shifted up (the blue line is still the same, the axis has just shifted along with the histogram), but the other statistical moments are the same.

Publication-ready plots

We combine the timeseries and the three evaluation plots in one plot for the manuscript. We want the font size to be 10 for all plots and we need to adjust the panel labels for the stability and fidelity plots. For the fidelity plot we also remove redundant ylabels and yticks.

[14]:

timeseries_font10 = timeseries + theme(text = element_text(size = 10))
Independence_font10 = Independence_California + theme(text = element_text(size = 10))
Stability_font10 = stability_test(
 ensemble = SEAS5_California_events_hindcast,
 lab = 'August temperature (C)',
 var_name = 't2m',
 fontsize = 10,
 panel_labels = c("c", "d")
)
Fidelity_font10 = fidelity_test(
 obs = ERA5_California_events_hindcast$t2m,
 ensemble = SEAS5_California_events_hindcast$t2m,
 ylab = '',
 yticks = FALSE,
 units = 'C',
 biascor = FALSE,
 fontsize = 10,
 panel_labels = c("e", "f", "g", "h")
)

Warning message:
“Removed 4 row(s) containing missing values (geom_path).”

[15]:

Evaluations = ggpubr::ggarrange(timeseries_font10,
 Independence_font10,
 Stability_font10,
 Fidelity_font10,
 labels = c("a","b", "", ""),
 font.label = list(size = 10,
 color = "black",
 face = "bold",
 family = NULL),
 ncol = 2,
 nrow = 2)
Evaluations
ggsave(Evaluations,height = 180, width = 180, units = 'mm', filename = "graphs/California_evaluation_test2.pdf")

Warning message:
“Removed 4680 rows containing non-finite values (stat_boxplot).”
Warning message:
“Removed 1625 rows containing non-finite values (stat_ydensity).”
Warning message:
“Removed 1625 rows containing non-finite values (stat_boxplot).”

[image: ../../_images/Notebooks_examples_California_Fires_51_1.png]

Illustrate

Was there a trend in the temperature extremes over the last decades? Let’s investigate!

First, we are loading the required extRemes package:

[9]:

require('extRemes')

Loading required package: extRemes

Loading required package: Lmoments

Loading required package: distillery

Attaching package: ‘extRemes’

The following objects are masked from ‘package:stats’:

 qqnorm, qqplot

We also source some R code to make the unseen-trends plots. These functions were written for this case study and we cannot ensure robustness to other case studies.

[24]:

source('src/evt_plot.r')

We use ERA5 events from 1981 to match the starting date of SEAS5, which we call ‘obs’. In addition, we use the bias corrected UNSEEN ensemble with ld 6 removed. We remove the first two years from ERA5 and we remove lead time 6 from the SEAS5 ensemble:

[10]:

obs <- ERA5_California_events[
 ERA5_California_events$time > '1981-02-01',]

UNSEEN_bc <- SEAS5_California_events[SEAS5_California_events$leadtime < 6 &
 SEAS5_California_events$number < 25,]

And then we correct the SEAS5 temperature bias using a mean adjustment calculated over the hindcast period.

[11]:

UNSEEN_bc$t2m <- (UNSEEN_bc$t2m +
 mean(ERA5_California_events_hindcast$t2m) - mean(SEAS5_California_events_hindcast$t2m)
)
str(UNSEEN_bc)

'data.frame': 4000 obs. of 4 variables:
 $ leadtime: int 2 2 2 2 2 2 2 2 2 2 ...
 $ time : Date, format: "1981-08-01" "1981-08-01" ...
 $ number : int 0 1 2 3 4 5 6 7 8 9 ...
 $ t2m : num 23 24.8 23.2 23.9 24.6 ...

Lets plot the data to see whats going on

[12]:

timeseries = unseen_timeseries(
 ensemble = UNSEEN_bc,
 obs = obs,
 ensemble_yname = "t2m",
 ensemble_xname = "time",
 obs_yname = "t2m",
 obs_xname = "time",
 ylab = "August California temperature (C)")

timeseries + theme(text = element_text(size = 14))

[image: ../../_images/Notebooks_examples_California_Fires_62_0.png]

We apply extreme value theory to analyze the likelihood and trend of the temperature extremes. There are different extreme value distributions that can be used to fit to the data. First, we fit a stationary Gumbel and a GEV distribution (including shape parameter) to the observed extremes, which shows that GEV better describes the data with a p-value of 0.0001 using the LR-test. Then we fit a nonstationary GEV distribution to the observed temperatures and show that this best fits the data with a
very small p-value of 3.633e-05 as compared to the stationary distribution (much below 0.05 based on 5% significance with the likelihood ratio test).

[13]:

Fit stationary distributions
fit_obs_Gumbel <- fevd(x = obs$t2m,
 type = "Gumbel"
)
fit_obs_GEV <- fevd(x = obs$t2m,
 type = "GEV"
)
And the nonstationary distribution
fit_obs_GEV_nonstat <- fevd(x = obs$t2m,
 type = "GEV",
 location.fun = ~ c(1:length(obs$time)), ##Fitting the gev with a location and scale parameter linearly correlated to the covariate (years)
 scale.fun = ~ c(1:length(obs$time)),
 use.phi = TRUE
)
#And test the fit
##1. Stationary Gumbel vs stationary GEV
lr.test(fit_obs_Gumbel, fit_obs_GEV_nonstat)
##2. Stationary GEV vs Nonstationary GEV
lr.test(fit_obs_GEV, fit_obs_GEV_nonstat)

 Likelihood-ratio Test

data: obs$t2mobs$t2m
Likelihood-ratio = 20.446, chi-square critical value = 7.8147, alpha =
0.0500, Degrees of Freedom = 3.0000, p-value = 0.0001372
alternative hypothesis: greater

 Likelihood-ratio Test

data: obs$t2mobs$t2m
Likelihood-ratio = 20.446, chi-square critical value = 5.9915, alpha =
0.0500, Degrees of Freedom = 2.0000, p-value = 3.633e-05
alternative hypothesis: greater

For the unseen ensemble this analysis is slightly more complicated since we need a covariate that has the same length as the ensemble:

[14]:

#Create the ensemble covariate
year_vector = as.integer(format(UNSEEN_bc$time, format="%Y"))
covariate_ens = year_vector - 1980

Fit the stationary distribution
fit_unseen_GEV <- fevd(x = UNSEEN_bc$t2m,
 type = 'GEV',
 use.phi = TRUE)

fit_unseen_Gumbel <- fevd(x = UNSEEN_bc$t2m,
 type = 'Gumbel',
 use.phi = TRUE)

Fit the nonstationary distribution
fit_unseen_GEV_nonstat <- fevd(x = UNSEEN_bc$t2m,
 type = 'GEV',
 location.fun = ~ covariate_ens, ##Fitting the gev with a location and scale parameter linearly correlated to the covariate (years)
 scale.fun = ~ covariate_ens,
 use.phi = TRUE)

And the likelihood ratio test tells us that the nonstationary GEV distribution is the best fit, both p-values < 2.2e-16:

[15]:

#And test the fit
##1. Stationary Gumbel vs stationary GEV
lr.test(fit_unseen_Gumbel,fit_unseen_GEV)
##2. Stationary GEV vs Nonstationary GEV
lr.test(fit_unseen_GEV, fit_unseen_GEV_nonstat)

 Likelihood-ratio Test

data: UNSEEN_bc$t2mUNSEEN_bc$t2m
Likelihood-ratio = 568.39, chi-square critical value = 3.8415, alpha =
0.0500, Degrees of Freedom = 1.0000, p-value < 2.2e-16
alternative hypothesis: greater

 Likelihood-ratio Test

data: UNSEEN_bc$t2mUNSEEN_bc$t2m
Likelihood-ratio = 945.52, chi-square critical value = 5.9915, alpha =
0.0500, Degrees of Freedom = 2.0000, p-value < 2.2e-16
alternative hypothesis: greater

We plot unseen trends in 100-year extremes. The function unseen-trends1 fits the trend for a selected return period (rp) for both the observed and ensemble datasets. For the observed dataset, the year 2020 was not used in the fit. For more info on the UNSEEN-trend method see this paper [https://doi.org/10.1038/s41612-020-00149-4] and for more details on the results, see section 3.2 of the open workflow paper [http://eartharxiv.org/repository/view/2681/]. The function was written for
this case study in specific, and we cannot ensure robustness to other case studies.

[19]:

year_vector = as.integer(format(UNSEEN_bc$time, format="%Y"))
covariate_ens = year_vector - 1980

Trend_2year <- unseen_trends1(ensemble = UNSEEN_bc$t2m,
 x_ens = year_vector,
 x_obs = 1981:2020,
 rp = 2,
 obs = obs$t2m,
 covariate_ens = covariate_ens,
 covariate_obs = c(1:(length(obs$time)-1)),
 covariate_values = c(1:length(obs$time)),
 GEV_type = 'GEV',
 ylab = 'August temperature (C)',
 title = '2-year') +
ylim(c(20,28.5))

Trend_100year <- unseen_trends1(ensemble = UNSEEN_bc$t2m,
 x_ens = year_vector,
 x_obs = 1981:2020,
 rp = 100,
 obs = obs$t2m,
 covariate_ens = covariate_ens,
 covariate_obs = c(1:(length(obs$time)-1)),
 covariate_values = c(1:length(obs$time)),
 GEV_type = 'GEV',
 ylab = '',
 title = '100-year') +
ylim(c(20,28.5))

We combine the two plots:

[21]:

ggpubr::ggarrange(Trend_2year,Trend_100year,
 labels = c("a","b"),
 common.legend = TRUE,
 font.label = list(size = 14,
 color = "black",
 face = "bold",
 family = NULL),
 ncol = 2,
 nrow = 1) #+
ggsave(height = 100, width = 180, units = 'mm', filename = "graphs/California_trends.png")

[image: ../../_images/Notebooks_examples_California_Fires_72_0.png]

There is a clear trend in the temperature extremes over last 40 years. How has this trend influenced the likelihood of occurrence of the 2020 event? The function unseen_trends2 plots the extreme value distributions for the ‘year’ covariate 1981 and 2020. There is a clear difference – the distribution for 1981 does not even reach the 2020 event. See section 3.2 of the open workflow paper [http://eartharxiv.org/repository/view/2681/] for more details on this exciting but scary result!
Note that also this function was written for this case study in specific, and we cannot ensure robustness to other case studies.

[25]:

p2 <- unseen_trends2(ensemble = UNSEEN_bc$t2m,
 obs = obs[1:(length(obs$time)-1),]$t2m,
 covariate_ens = covariate_ens,
 covariate_obs = c(1:(length(obs$time)-1)),
 GEV_type = 'GEV',
 ylab = 'August temperature (C)')

Distributions = p2 + geom_hline(yintercept = obs[obs$time == '2020-08-01',]$t2m) #+
Distributions

[image: ../../_images/Notebooks_examples_California_Fires_74_0.png]

Let’s make a publication-ready plot by combining the above figures.

[135]:

Trends = ggpubr::ggarrange(Trend_2year,Trend_100year,
 labels = c("a","b"),
 common.legend = TRUE,
 font.label = list(size = 10,
 color = "black",
 face = "bold",
 family = NULL),
 ncol = 2,
 nrow = 1)

[136]:

ggpubr::ggarrange(Trends,Distributions,
 labels = c("","c"),
 font.label = list(size = 10,
 color = "black",
 face = "bold",
 family = NULL),
 ncol = 1,
 nrow = 2) +
ggsave(height = 180, width = 180, units = 'mm', filename = "graphs/California_trends2.pdf")

[image: ../../_images/Notebooks_examples_California_Fires_77_0.png]

Applications:

We have seen the worst fire season over California in 2020. Such fires are likely part of a chain of impacts, from droughts to heatwaves to fires, with feedbacks between them. Here we assess August temperatures and show that the 2020 August average temperature was very anomalous. We furthermore use SEAS5 forecasts to analyze the trend in rare extremes. Evaluation metrics show that the model simulations have a high bias, which we correct for using an additive bias correction. UNSEEN trend
analysis shows a clear trend over time, both in the model and in the observed temperatures. Based on this analysis, temperature extremes that you would expect to occur once in 1000 years in 1981 might occur once in <10 years at present (2020).

Note

Our analysis shows the results of a linear trend analysis of August temperature averages over 1981-2020. Other time windows, different trends than linear, and spatial domains could (should?) be investigated, as well as drought estimates in addition to temperature extremes.

 UK Precipitation

Launch in Binder [image: Binder] [https://mybinder.org/v2/gh/esowc/UNSEEN-open/master?filepath=doc%2FNotebooks%2Fexamples%2FUK_Precipitation.ipynb]

UK Precipitation

February 2020 case study

February 2020 was the wettest February on record in the UK (since 1862), according to the Met Office [https://www.metoffice.gov.uk/about-us/press-office/news/weather-and-climate/2020/2020-winter-february-stats]. The UK faced three official storms during February, and this exceptional phenomena attracted media attention, such as an article from the BBC [https://www.bbc.com/news/science-environment-51713172] on increased climate concerns among the population.

Here, we will test the applicability and potential of using SEAS5 for estimating the likelihood of the 2020 UK February precipitation event.

Retrieve data

The main functions to retrieve all forecasts (SEAS5) is retrieve_SEAS5. We want to download February average precipitation over the UK. By default, the hindcast years of 1981-2016 are downloaded for SEAS5. The folder indicates where the files will be stored, in this case outside of the UNSEEN-open repository, in a ‘UK_example’ directory. For more explanation, see retrieve.

[2]:

import os
import sys
sys.path.insert(0, os.path.abspath('../../../'))
os.chdir(os.path.abspath('../../../'))

import src.cdsretrieve as retrieve
import src.preprocess as preprocess

[29]:

import numpy as np
import xarray as xr

[4]:

retrieve.retrieve_SEAS5(variables = 'total_precipitation',
 target_months = [2],
 area = [60, -11, 50, 2],
 years=np.arange(1981, 2021),
 folder = '../UK_example/SEAS5/')

We use the EOBS observational dataset to evaluate the UNSEEN ensemble. I tried to download EOBS through the Copernicus Climate Data Store, but the Product is temporally disabled for maintenance purposes. As workaround I downloaded EOBS (from 1950 - 2019) and the most recent EOBS data (2020) here [https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php]. Note, you have to register as E-OBS user.

Preprocess

In the preprocessing step, we first merge all downloaded files into one xarray dataset, see preprocessing [https://unseen-open.readthedocs.io/en/latest/Notebooks/2.Preprocess/2.Preprocess.html#Merge].

[6]:

SEAS5_UK = preprocess.merge_SEAS5(folder = '../UK_example/SEAS5/', target_months = [2])

Lead time: 01
12
11
10
9

The SEAS5 total precipitation rate is in m/s. You can easily convert this and change the attributes. Click on the show/hide attributes button to see the assigned attributes.

[22]:

SEAS5_UK['tprate'] = SEAS5_UK['tprate'] * 1000 * 3600 * 24 ## From m/s to mm/d
SEAS5_UK['tprate'].attrs = {'long_name': 'rainfall',
 'units': 'mm/day',
 'standard_name': 'thickness_of_rainfall_amount'}
SEAS5_UK

[22]:

Show/Hide data repr

Show/Hide attributes

xarray.Dataset

	

 Retrieve

Retrieve

We want to download the monthly precipitation for February. I use the automatically generated request from the CDS server. There are two datasets we can use to download the data: Seasonal forecast daily data on single levels [https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-original-single-levels?tab=form] and Seasonal forecast monthly statistics on single levels [https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-monthly-single-levels?tab=form]. We will use the
latter for easy downloading of the monthly values. If we want to go to higher temporal resolution, such as daily extremes, we will have to consult the other dataset.

To get started with CDS, you have to register at https://cds.climate.copernicus.eu/ and copy your UID and API key from https://cds.climate.copernicus.eu/user in the ~/.cdsapirc file in the home directory of your user. See the ml-flood project [https://nbviewer.jupyter.org/github/esowc/ml_flood/blob/master/notebooks/1_data_download_analysis_visualization/1.01_cdsapi_setup.ipynb] for more details

[7]:

UID = 'UID'
API_key = 'API_key'

[8]:

import os
#Uncomment the following lines to write the UID and API key in the .cdsapirc file
with open(os.path.join(os.path.expanduser('~'), '.cdsapirc'), 'w') as f:
f.write('url: https://cds.climate.copernicus.eu/api/v2\n')
f.write(f'key: {UID}:{API_key}')

[8]:

46

[8]:

47

Import packages

[1]:

##This is so variables get printed within jupyter
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

[2]:

##import packages
import os
import cdsapi ## check the current working directory, which should be the UNSEEN-open directory
import numpy as np
import xarray as xr
import matplotlib.pyplot as plt
import numpy as np
import cartopy
import cartopy.crs as ccrs

[3]:

##We want the working directory to be the UNSEEN-open directory
pwd = os.getcwd() ##current working directory is UNSEEN-open/Notebooks/1.Download
pwd #print the present working directory
os.chdir(pwd+'/../../../') # Change the working directory to UNSEEN-open
os.getcwd() #print the working directory

[3]:

'C:\\Users\\Timo\\OneDrive - Loughborough University\\GitHub\\UNSEEN-open\\doc\\Notebooks\\1.Download'

[3]:

'C:\\Users\\Timo\\OneDrive - Loughborough University\\GitHub\\UNSEEN-open\\doc'

First download

In our request, we will use the monthly mean. Interestingly, there is also the option to use the monthly maximum! We previously downloaded the data on daily resolution and extracted the monthly (or seasonal) maximum from that data. If we could just download the monthly maximum instead that might save a lot of processing power! However, you would be restricted to daily extremes only, for multi-day extremes (5 days is often used), you would have to do the original processing workflow. We select
the UK domain to reduce the size of the download.

Here I download the monthly mean total precipitation (both convective and large scale precipitation) forecast for February 1993. It downloads all 25 ensemble members for the forecasts initialized in january.

[4]:

##Our first download:

c = cdsapi.Client()

c.retrieve(
 'seasonal-monthly-single-levels',
 {
 'format': 'netcdf',
 'originating_centre': 'ecmwf',
 'system': '5',
 'variable': 'total_precipitation',
 'product_type': [
 'monthly_mean', #'monthly_maximum',, 'monthly_standard_deviation',
],
 'year': '1993', #data before 1993 is available.
 'month': '01', #Initialization month. Target month is February (2), initialization months are August-January (8-12,1)
 'leadtime_month': [##Use of single months is much faster. Leadtime 0 does not exist. The first lead time is 1.
 '1', '2',
],
 'area': [##Select UK domain to reduce the size of the download
 60, -11, 50,
 2,
],
 },
 'Data/First_download.nc') ##can I use nc? yes!

2020-05-13 10:08:56,140 INFO Welcome to the CDS
2020-05-13 10:08:56,142 INFO Sending request to https://cds.climate.copernicus.eu/api/v2/resources/seasonal-monthly-single-levels
2020-05-13 10:08:56,983 INFO Request is completed
2020-05-13 10:08:56,984 INFO Downloading http://136.156.132.110/cache-compute-0001/cache/data0/adaptor.mars.external-1589266964.5635436-26283-29-a38e8975-b0ec-49ee-8f9b-7dea389f59cf.nc to Data/First_download.nc (16.4K)
2020-05-13 10:08:57,131 INFO Download rate 112.7K/s

[4]:

Result(content_length=16800,content_type=application/x-netcdf,location=http://136.156.132.110/cache-compute-0001/cache/data0/adaptor.mars.external-1589266964.5635436-26283-29-a38e8975-b0ec-49ee-8f9b-7dea389f59cf.nc)

Use xarray to visualize the netcdf file

I open the downloaded file and plot February 1993 precipitation over the UK.

[5]:

pr_1993_ds=xr.open_dataset('Data/First_download.nc')
pr_1993_ds

[5]:

Show/Hide data repr

Show/Hide attributes

xarray.Dataset

	

 Preprocess

Preprocess

The preprocessing steps consist of merging all retrieved files into one xarray dataset and extracting the spatial and temporal average of the event of interest.

Merge

Here it is shown how all retrieved files are loaded into one xarray dataset, for both SEAS5 and for ERA5.

SEAS5

All retrieved seasonal forecasts are loaded into one xarray dataset. The amount of files retrieved depends on the temporal extent of the extreme event that is being analyzed (i.e are you looking at a monthly average or a seasonal average?). For the Siberian heatwave, we have retrieved 105 files (one for each of the 35 years and for each of the three lead times, (see Retrieve). For the UK, we are able to use more forecasts, because the target month is shorter:
one month as compared to three months for the Siberian example. We retrieved 5 leadtimes x 35 = 175 files.

Each netcdf file contains 25 ensemble members, hence has the dimensions lat, lon, number (25 ensembles). Here we create an xarray dataset that also contains the dimensions time (35 years) and leadtime (5 initialization months). To generate this, we loop over lead times, and open all 35 years of the lead time and then concatenate those leadtimes.

[1]:

##This is so variables get printed within jupyter
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

[2]:

import os
import sys
sys.path.insert(0, os.path.abspath('../../../'))
import src.cdsretrieve as retrieve

[3]:

os.chdir(os.path.abspath('../../../'))
os.getcwd() #print the working directory

[3]:

'/lustre/soge1/projects/ls/personal/timo/UNSEEN-open'

[4]:

import xarray as xr
import numpy as np

def merge_SEAS5(folder, target_months):
 init_months, leadtimes = retrieve._get_init_months(target_months)
 print('Lead time: ' + "%.2i" % init_months[0])
 SEAS5_ld1 = xr.open_mfdataset(
 folder + '*' + "%.2i" % init_months[0] + '.nc',
 combine='by_coords') # Load the first lead time
 SEAS5 = SEAS5_ld1 # Create the xarray dataset to concatenate over
 for init_month in init_months[1:len(init_months)]: ## Remove the first that we already have
 print(init_month)
 SEAS5_ld = xr.open_mfdataset(
 folder + '*' + "%.2i" % init_month + '.nc',
 combine='by_coords')
 SEAS5 = xr.concat([SEAS5, SEAS5_ld], dim='leadtime')
 SEAS5 = SEAS5.assign_coords(leadtime = np.arange(len(init_months)) + 2) # assign leadtime coordinates
 return(SEAS5)

[5]:

SEAS5_Siberia = merge_SEAS5(folder='../Siberia_example/SEAS5/',
 target_months=[3, 4, 5])

Lead time: 02
1
12

[6]:

SEAS5_Siberia

[6]:

Show/Hide data repr

Show/Hide attributes

xarray.Dataset

	

 Evaluate

Evaluate

Can seasonal forecasts be used as ‘alternate’ realities? Here we show how a set of evaluation metrics can be used to answer this question. The evaluation metrics are available through an R package [https://github.com/timokelder/UNSEEN] for easy evaluation of the UNSEEN ensemble. Here, we illustrate how this package can be used in the UNSEEN workflow. We will evaluate the generated UNSEEN ensemble of UK February precipitation and of MAM Siberian heatwaves.

The framework to evaluate the UNSEEN ensemble presented here consists of testing the ensemble member independence, model stability and model fidelity, see also NPJ paper [https://doi.org/10.1038/s41612-020-00149-4].

Note

This is R code and not python!

We switch to R since we believe R has a better functionality in extreme value statistics.

We load the UNSEEN package and read in the data.

[2]:

library(UNSEEN)

The data that is imported here are the files stored at the end of the preprocessing step.

[3]:

SEAS5_Siberia_events <- read.csv("Data/SEAS5_Siberia_events.csv", stringsAsFactors=FALSE)
ERA5_Siberia_events <- read.csv("Data/ERA5_Siberia_events.csv", stringsAsFactors=FALSE)

[4]:

SEAS5_Siberia_events_zoomed <- read.csv("Data/SEAS5_Siberia_events_zoomed.csv", stringsAsFactors=FALSE)
ERA5_Siberia_events_zoomed <- read.csv("Data/ERA5_Siberia_events_zoomed.csv", stringsAsFactors=FALSE)

[5]:

SEAS5_Siberia_events$t2m <- SEAS5_Siberia_events$t2m - 273.15
ERA5_Siberia_events$t2m <- ERA5_Siberia_events$t2m - 273.15
SEAS5_Siberia_events_zoomed$t2m <- SEAS5_Siberia_events_zoomed$t2m - 273.15
ERA5_Siberia_events_zoomed$t2m <- ERA5_Siberia_events_zoomed$t2m - 273.15

[6]:

head(SEAS5_Siberia_events_zoomed,n = 3)
head(ERA5_Siberia_events, n = 3)

A data.frame: 3 × 4

 	

 Global monthly temperature records in ERA5

Global monthly temperature records in ERA5

Where have monthly average temperatures broken records across the world in 2020?

[image: Global Temperature records 2020]

In this first section, we load required packages and modules

[29]:

##This is so variables get printed within jupyter
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

[2]:

##import packages
import os
import xarray as xr
import numpy as np
import matplotlib.pyplot as plt
import cartopy
import cartopy.crs as ccrs
import matplotlib.ticker as mticker

#for rank calculation
import bottleneck

[3]:

this is to load our own function to retrieve ERA5,
which is located in ../src/CDSretrieve.py
import sys
sys.path.append('../')

[4]:

##And here we load the module
import src.CDSretrieve as retrieve

[5]:

##We want the working directory to be the UNSEEN-open directory
pwd = os.getcwd() ##current working directory is UNSEEN-open/Notebooks/1.Download
pwd #print the present working directory
os.chdir(pwd+'/../') # Change the working directory to UNSEEN-open
os.getcwd() #print the working directory

[5]:

'/lustre/soge1/projects/ls/personal/timo/UNSEEN-open/Notebooks'

[5]:

'/lustre/soge1/projects/ls/personal/timo/UNSEEN-open'

Download ERA5

This section describes the retrieval of ERA5. We retrieve netcdf files of global monthly 2m temperature and 2m dewpoint temperature for each year over 1979-2020.

[39]:

retrieve.retrieve_ERA5(variables = ['2m_temperature','2m_dewpoint_temperature'], folder = '../Siberia_example/')
;

[39]:

''

We load all files with xarray open_mfdataset. The latest 3 months in this dataset are made available through ERA5T, which might be slightly different to ERA5. In the downloaded file, an extra dimenions ‘expver’ indicates which data is ERA5 (expver = 1) and which is ERA5T (expver = 5). After retrieving and loading, I combine both ERA5 and ERA5T to create a dataset that runs until August 2020.

[10]:

ERA5 = xr.open_mfdataset('../Siberia_example/ERA5_????.nc',combine='by_coords') ## open the data
ERA5#

[10]:

Show/Hide data repr

Show/Hide attributes

xarray.Dataset

	

 California august temperature anomaly

California august temperature anomaly

How anomalous was the August 2020 average temperature?

[image: California Temperature August 2020]

In this first section, we load required packages and modules

[1]:

##This is so variables get printed within jupyter
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interacti